A Note on an NSFD Scheme for a Mathematical Model of Respiratory Virus Transmission
نویسندگان
چکیده
We construct a nonstandard finite difference (NSFD) scheme for an SIRS mathematical model of respiratory virus transmission. This discretization is in full compliance with the NSFD methodology as formulated by R. E. Mickens. By use of an exact conservation law satisfied by the SIRS differential equations, we are able to determine the corresponding denominator function for the discrete first-order time derivatives. Our scheme is dynamically consistent with the SIRS differential equations since the conservation laws are preserved. Further, the scheme is shown to satisfy a positivity condition for its solutions for all values of the time step-size.
منابع مشابه
A nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4^{+} t-cells
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells. We study the effect of the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of the presented model. The nonstandard finite difference (NSFD) scheme is implemented to study the dynamic behaviors in the fractional--order HIV-1 ...
متن کاملA numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme
In this paper, the fractional--order form of three dimensional chemostat model with variable yields is introduced. The stability analysis of this fractional system is discussed in detail. In order to study the dynamic behaviours of the mentioned fractional system, the well known nonstandard (NSFD) scheme is implemented. The proposed NSFD scheme is compared with the forward Euler and ...
متن کاملNumerical modeling for nonlinear biochemical reaction networks
Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by the Runge-Kutta of order four (RK4) and by nonstandard finite difference (NSFD) method. A...
متن کاملMatrix Nonstandard Numerical Schemes for Epidemic Models
This paper is concerned with the construction and developing of several nonstandard finite difference (NSFD) schemes in matrix form in order to obtain numerical solutions of epidemic models. In particular, we deal with a classical SIR epidemic model and a seasonal model associated with the evolution of the transmission of respiratory syncytial virus RSV in the human population. The first model ...
متن کاملMathematical Model for Transmission Dynamics of Hepatitus C Virus with Optimal Control Strategies
An epidemic model with optimal control strategies was investigated for Hepatitus C Viral disease that can be transmitted through infected individuals. In this study, we used a deterministic compartmental model for assessing the effect of different optimal control strategies for controlling the spread of Hepatitus C disease in the community. Stability theory of differential equations is us...
متن کامل